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ABSTRACT 

The kinetic spinodal (KS) in supercooled liquids, similar to the KS in superheated 

and stretched liquids [Physica A, 269: 252 (1999)], was introduced as a locus where the 

mean time of formation of a critical nucleus becomes shorter than a relaxation time to 

local equilibrium. If the surface tension of the solid-liquid interface is known, the kinetic 

spinodal is completely determined by the equation of state of supercooled liquid. The 

theory was tested again experimental data on the surface tension and homogeneous 

nucleation limit for supercooled water. Reasonably good agreement between theoretical 

predictions and experimental data was achieved. A prediction of the high-temperature 

limit for glass transitions is also discussed. 

 

KEY WORDS: glass transition; homogeneous nucleation; kinetic spinodal; supercooled 

water, surface tension. 
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1. INTRODUCTION 

In the usual thermodynamic theory of phase transitions, the spinodal, the locus of 

states of infinite compressibility, is considered as a boundary of the metastable states in 

fluids [1]. However, physically the metastable state becomes short-lived well before the 

spinodal is reached [2, 3]. According to the classical theory of homogeneous nucleation, 

the life time of the metastable state is determined by the mean time of formation of a 

critical nucleus of stable phase tM, which depends on both the thermodynamic and 

transport properties of fluid (for a review see Ref. [4]). In this theory, a metastable phase 

is considered a short-lived, but still thermodynamic, state of metastable fluid. In the 

kinetic theory of relaxation of metastable state developed by Patashinskii and Shumilo [5, 

6], the physical boundary of metastable states was introduced as a locus where the mean 

time of formation of a critical nucleus of stable phase, tM, becomes shorter than a 

characteristic time governing the decay of fluctuations to local equilibrium, tR. When 

M Rt t≤ , the entire concept of a homogeneous state ceases to be valid, and, as a result of 

fluctuations, the initial homogeneous state transforms to a heterogeneous state during the 

time Rt t≈  [6]. The both times, tM and tR, depend on the kinetic properties of liquid, but 

the ratio tM/tR depends on the thermodynamic properties only. Therefore, the physical 

boundary of metastable state, or kinetic spinodal, in this approach is completely 

determined by the equation of state and by the surface tension.  

In the present work, we continue the study of the kinetic boundary of metastable 

states in fluids initiated in our previous works for vapor-liquid equilibrium [7, 8]. Here 

we extend this approach to solid-liquid equilibrium and consider the kinetic boundary of 
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metastable states in supercooled liquids. The theory was tested again experimental data 

for supercooled water. 

 

2. THEORETICAL BACKGROUND 

The dynamics of a system in the metastable state of the initial phase is connected with the 

relaxation and fluctuations of the hydrodynamic fields of the order parameter ( , )x tϕ �

, 

energy density ( , )x tε �

, etc. [5, 6]. The slowness of their relaxation allows us to exclude 

other degrees of freedom that supposedly reach local equilibrium. In liquids, we may 

consider the situation where the dynamics of a single hydrodynamic mode, which is a 

scalar field of the order parameter only. In this case, the equation of motion of the system 

is [9]  

    
t c st

H
f

ϕ
ϕ

 ∂ ∂= −Γ ∆ + ∂ ∂ 
    (1) 

where Γc is a transport coefficient, H is an effective Hamiltonion, and fst is an external 

random force modeling the thermal fluctuations. The effective Hamiltonion H{ϕ} can be 

expanded in a functional series as in a second-order phase transition. In the vicinity of the 

stability region, the effective Hamiltonion can be represented in the form [6] 

   3 2 2 332{ } ( ) ,
2 2 3

ug u
H d rϕ ϕ ϕ ϕ = ∇ + +  ∫    (2) 

where g, u2, u3 >0, and u2 are assumed to be small. The curve u2=0 represents a bare or 

“unrenormalized” spinodal (i.e., a spinodal of the system in the absence of fluctuations). 

The solution of Eqs. (1) and (2), which was obtained by Patashinskii and Shumilo [5, 6], 

yields a lifetime of the metastable phase, which accounts for fluctuations and is given by 

equation 
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    ( )min
0

4
exp /M Rt t W kT

πγ γ
λ

 
=  

 
   (3) 

where 2
0 216 /Rt g u= Γ  is a characteristic time governing the relaxation toward local 

equilibrium, minW  is the nucleation barrier, which is equal to the minimum reversible 

work required to form a critical size nuclear, the dimensionless parameter 

3/ 2 2
2 3( ) / Bu g k Tuγ = , and 0 8.25λ ≅  is a dimensionless constant. It follows from Eq. (3) 

that when γWmin>> kBT the lifetime of the metastable phase is much longer than the 

relaxation time tR. For γ<kBT/Wmin, the initial homogeneous state that is stable with 

respect to long-wavelength fluctuations transforms to a heterogeneous state as a result of 

fluctuations during a time comparable with the time governing the relaxation toward local 

equilibrium (tM≅ tR). The curve γWmin =kBT, or, alternatively, 

   

2 /32
3

2 2
min

( )1
( ) ,B

KS

k Tu
u u

g W

 
= =  

 
    (4) 

can be regarded as the physical (kinetic) spinodal, which limits the region in the phase 

diagram (u2>(u2)KS) of statistically well defined and experimentally attainable metastable 

states. For 0< u2<(u2)KS the lifetime tM<tR and the very concept of an equilibrium 

homogeneous state is no longer applicable, and this spinodal region separates metastable 

and unstable states in the phase diagram of one-component fluids.  

In order to use the theoretical result contained in Eq. (4) for practical calculations 

of the kinetic boundary of metastable states, we need to know how the parameters u2, u3, 

and g of the effective Hamiltonion in Eq. (2) are related to the thermodynamic parameters 

of the real physical system. As was shown in our previous works [7, 8], parameters 2u  



 6 

and 3u  are directly related to the first and second derivatives of the chemical potential, 

µ , with respect to the density 

 
2

2 3
2 3 2

1 1
,

2 2B B

T T

u k T u k Tρ ρρ
µ µρ ρµ ρ ρµ
ρ ρ

  ∂ ∂= = = =  ∂ ∂   
 (5) 

and for the parameter g  a good estimate is  

 
1

3( )Bg k T ρ∗=  (6) 

where ρ∗ is a characteristic density in the system. In the superheated and stretched liquids 

as a characteristic density in Eq. (6) we used the critical density cρ  [7, 8], while in 

supercooled liquids one can set ρ∗  equal to the density of liquid in the triple point, 

trρ ρ∗ = .  

Finally, Eq. (4) for the kinetic spinodal KST  in the supercooled liquids with 

account of Eqs. (5) and (6) can be written in the form 

 

2 1
2 3 3

min

( )
( )

4 ( )
B KS

KS
KS tr

k T T
T

W T
ρρ

ρ

µ ρµ
ρ

   
=    
    

 (7) 

where the nucleation barrier for the spherical crystal nuclear in supercooled liquid is 

given by [2, 3] 

 
( ) ( ) ( )2 3 2

min 2 2

16

3
m SL sT P T v T

W
h T

σπ=
∆ ∆

 (8) 

where SLσ  is the surface tension at the liquid-crystal interface, sv is the molar volume of 

the crystal, h∆  is the molar enthalpy of fusion, mT  is a melting temperature at given 

pressure P , and mT T T∆ = −  is a degree of supercooling. 
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3. COMPARISON WITH EXPERIMENTAL DATA 

 In order to calculate the kinetic boundary of metastable state with Eq. (7), one 

needs to know the equation of state, which can be extrapolated into the metastable region, 

and the surface tension. For the vapor-liquid equilibrium such equation of state and the 

surface tension are usually well known, and the kinetic spinodal in superheated and 

stretched liquids can be predicted with a high accuracy [7, 8]. In supercooled liquids, the 

situation is more complicated. The equation of state obtained from the analysis of the 

experimental data in stable liquid, as a rule, can not be extrapolated into the supercooled 

region and the solid-liquid surface tension is scarcely known. Unlike the vapor-liquid 

surface tension, the solid-liquid surface tension can not be measured directly and it is 

usually determined from the analysis of the experimental data on the nucleation rate in 

supercooled liquid [2]. It is clear, that the numerical value of the surface tension obtained 

by this way depends strongly on the theoretical model applied for this analysis. All this 

increases the uncertainties in the prediction of the kinetic boundary of the metastable 

state in supercooled liquids. 

For a comparison of the theory with experimental data, we consider here the 

thermodynamic properties of supercooled water. For supercooled water, most of the 

information about the surface tension was obtained at atmospheric pressure; therefore, we 

first consider here the isothermal compressibility, TK , and homogeneous nucleation 

temperature, HT , data obtained at 0.1P =  MPa by Speedy and Angell [10]. The surface 

tension SLσ  was obtained from a solution of Eq. (7) for the kinetic spinodal where we set 

KS HT T= , with 235.16HT = K as obtained by Speedy and Angell [10]. For the 

representation of the thermodynamic properties of water the IAPWS-95 Formulation [11] 
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is recommended as a most accurate one. As was pointed up in the IAPWS release [11], 

this formulation behaves reasonably when extrapolated into the metastable region and 

represents the available experimental data of supercooled water to within the 

experimental accuracy. However, it is not clear how this EOS does represent the second 

derivatives of the pressure respect to density in supercooled water at temperatures close 

to ST . Therefore, in order to avoid a misinterpretation of experimental data, the density of 

liquid and the second derivative ρρµ  in Eq. (7) were calculated with the IAPWS-95 

Formulation [11] at the melting temperature mT . Since at low pressures near the melting 

curve ρ  and ρρµ  are the slowly varying quantities, we assume this is a reasonable 

approximation. We calculate the first derivative 1( ) /TT K RTρµ ρ−=  with the empirical 

expression for the isothermal compressibility 

 ( / 1)T SK A T T κγ
κ

−= −  (9) 

with the parameters 6296.5 10Aκ
−= ×  MPa, 0.349κγ = , and 228ST =  K obtained by 

Speedy and Angell [10] from a fit of Eq. (9) to their experimental data in supercooled 

water at 1P =  MPa. The melting temperature mT  was calculated with the international 

equation developed by Wagner et al. [12], while for the calculation of the ice density, 

Sρ , and heat of fusion, h∆ , we used the vapor pressure formulation for ice developed by 

Wexler [13].  

The result of our calculations in comparison with the values of surface tension 

obtained by other authors is shown in Fig. 1. Our value of surface tension lies between 

the values 0.0287SLσ =  J⋅m-2 and 0.0240SLσ =  J⋅m-2 obtained at the same temperature 

by Butorin and Skripov [14] and by Wood and Walton [15], respectively. The surface 
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tension reported in Refs. [14, 15] was obtained from the analysis of the nucleation rate 

data and, and, as was pointed out by Butorin and Skripov [14], the difference between 

them is due to introducing by Wood and Walton [15] an additional temperature-

dependent factor 2( / )mT T  into the equation for the nucleation barrier, Eq. (8) . Our value 

of surface tension, 0.0258SLσ =  J⋅m-2, was obtained from a different theoretical model. 

Therefore, the difference of about ± 8% obtained for SLσ  in our case can be considered 

as a reasonably small in view of the uncertainty of nucleation theory. Huang and Bartell 

[16] for example, obtained the same difference using slightly different modifications of 

kinetic theory for the analysis of their nucleation rate experimental data at 200T =  K. At 

lower temperatures this difference can even increase. A power-law interpolation  

 0.3
1 1( ) ( )( / )T T T Tσ σ=      (10) 

proposed by Huang and Bartell [16] is also shown in Fig. 1. At T=235 K, the power-law 

interpolation gives 0.0228SLσ =  J⋅m-2, what is about 5% lower than the value obtained 

by Wood and Walton [15]. While at low temperatures, T<200 K, the values of surface 

tension calculated with this interpolation lie of about 20-40% higher than ones obtained 

from the simple linear interpolation  

11 1( ) ( ) ( / ) ( )TT T d dT T Tσ σ σ= + −     (11) 

with 2

36.55
( / ) 0.211 10ot C
d dTσ −

=− = ×  J⋅m-2 obtained by Wood and Walton [15]. 

In order to estimate the values of the surface tension on other temperatures, we 

applied the described above procedure to isothermal compressibility and homogeneous 

nucleation data obtained by Kanno and Angell [17] at higher pressures up to 190 MPa. 

Filled circles in Fig. 1 show the values of the surface tension obtained by this way. One 
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can see that despite of expectation the surface tension extracted from our theory in this 

case is increased with decreasing of temperature. Such behavior of the surface tension is 

specific for heterogeneous nucleation that can be observed in large volumes [14], rather 

than for homogeneous nucleation in the small droplets. In Fig. 2, we show the critical 

radius of the nuclear  

( ) ( ) ( )2 m SL s
c

T P T v T
r

h T

σ
=

∆ ∆
    (12) 

calculated with different models for the surface tension at the homogeneous nucleation 

temperatures reported by Kanno and Angell [17]. At low temperatures, T<200 K, the 

critical radius of the nuclear calculated with Eqs. (10) and (11), cr � 0.3-0.9 nm, becomes 

comparable with the characteristic size of the network defects in liquid water [18]. In 

principle, in this case the network defects can play a role of the nucleation centers and 

can stimulate the heterogeneous nucleation even in the small droplets. Although there are 

also some other indications that liquid water can exist down to T=150 K [19], we are 

have no solid evidence that data reported by Kanno and Angell [17] correspond to 

heterogeneous nucleation. Therefore, we assume here that this unusual temperature 

behavior of the surface tension is a result of extrapolation of the quantity ρρµ  obtained at 

the melting temperature to the homogeneous nucleation temperature HT  at these 

pressures. In order to correct this behavior of the surface tension at low temperatures we, 

on the second step, used at all pressures the value 74.1ρρµ =  obtained at P=0.1 MPa. The 

results for the surface tension obtained with this constant value of the parameter ρρµ  are 

shown in Fig. 1 by empty circles. In this case, in the entire temperature range 180 

K<T<Tm the surface tension can be treated as a temperature independent constant, 
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0.0270 0.0012SLσ = ±  J⋅m-2
. This value is about of 20% bigger than the values obtained 

from the power-law interpolation of Huang and Bartell [16] and about of 20% smaller 

than values calculated from the Turbull’s expression [20] 

 2 /3SL

s

h

v
σ α ∆=  (13) 

with α =0.32 originally recommended for water by Turnbull [20].  

In Fig. 3, we show the temperatures at the kinetic spinodal, KST , calculated from 

Eq. (7) with the surface tension 0.0270SLσ =  J⋅m-2 and with the surface tension 

calculated with Eq. (13). In both cases, KST  satisfies to the obvious condition 

S KS HT T T< ≤ , or equivalently (u2)S<(u2)KS<(u2)H. Since the kinetic spinodal represents 

the boundary behind which no equilibrium thermodynamic state can exist, we consider 

here the lowest temperatures (i.e., KST  calculated with the surface tension as given by Eq. 

(13)) as a physical boundary of metastable states in supercooled water. The shaded area 

in Fig. 3 marks the region where no thermodynamic state for liquid water is possible. 

This is a “non-thermodynamic habitat” for liquid water not because in this region the 

parameter 0ρµ < , which violates the thermodynamic condition of mechanical stability. 

The first derivative ρµ , or equivalently the parameter 2u  in Eq. (2), can remain small but 

positive in this region. It is a “non-thermodynamic habitat” because the lifetime of the 

homogeneous state in this region is smaller than the time to establish local equilibrium. 

Therefore, any equilibrium homogeneous state for liquid water is not possible in this 

region. 
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4. DISCUSSION 

In the present work, we developed a general approach to predicting of the 

physical boundary of metastable states – kinetic spinodal in supercooled liquids. This 

approach requires only the equation of state and solid-liquid surface tension for the 

accurate prediction of the kinetic spinodal in supercooled liquids. The approach can be 

applied to any supercooled liquid with the scalar order parameter, including liquid metals. 

Here we applied this method for the calculation of the surface tension and the kinetic 

spinodal in supercooled water. A reasonably good agreement between experimental data 

was achieved.  

Although water is the most common and best studied liquid, the peculiar behavior 

of its physical properties in supercooled regime is still a puzzle for investigators [21], and 

it remains the most difficult fluid to modeling. Only during the last four-five years, 

several different models and equations of state were developed to represent the 

anomalous behavior of liquid water in the supercooled regime [22-29]. Our approach can 

not solve the problem of the describing the thermodynamic properties of supercooled 

water. However, it can be used as a test on the thermodynamic consistency of the already 

developed models, as it was done in superheated and stretched water [30]. 

 As example, we applied this method to the new analytical (NA) equation of state 

for supercooled water developed recently by Jeffery and Austin [29]. This equation 

predicts the existence of the second critical point (CP2) related to the low density water 

(LDW) – high density water (HDW) phase equilibrium, and qualitatively reproduces the 

anomalous behavior of the isothermal compressibility in supercooled water. However, the 

quantitative difference between experimental and calculated values of the isothermal 
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compressibility in supercooled water is significant (see Fig. 4). Because of the positions 

of the CP2 ( 2cT =228.3 K, 2cP =95.3 MPa, and 2cρ =1042 kg�m-3) the maximum 

compressibility calculated with NA EOS corresponds to the isobar P=100 MPa, but not 

to P=0.1 MPa, as observed in the experiment. As a consequence, the kinetic spinodal 

calculated with this equation of state lies above the homogeneous nucleation 

temperatures, what is physically incorrect. The phase diagram and the kinetic spinodal 

calculated with this equation are shown in Fig. 5. The principle difference between this 

diagram and the phase diagram shown in Fig. 3 is that since Eq. (7) now has two roots, 

1 2andKS KST T , and the “non-thermodynamic habitat” for supercooled liquid water now has 

a shape of the belt. The second critical point and the LDW-HDW coexistence curve lie 

inside the “non-thermodynamic habitat” belt, and, therefore, they have no physical 

meaning. Nevertheless, in principle, the conception of the second – “virtual critical point” 

can be useful if it yields a good representation of the thermodynamic properties of 

supercooled water outside the “non-thermodynamic habitat” belt created by this “virtual 

critical point” itself. 

A possible physical interpretation of the second kinetic spinodal temperature 2KST  

is that this temperature corresponds to the upper temperature limit where the glass 

transition at a given pressure is possible. For example, at P =0.1 MPa, the temperature 

1KST  calculated with the NA EOS [29], is about 16 K higher than the homogeneous 

nucleation temperature obtained by Speedy and Angell [10]. After a shift of the second 

kinetic spinodal temperature 2KST  at the same value, one obtains 2
shift

KST =167 K, which is a 

reasonable estimate for the glass transition limit at this pressure. In order to give a more 
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accurate prediction of the glass transition limit in supercooled liquids, we need both, a 

better EOS and additional theoretical study of this phenomenon. 
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Fig. 1. The ice-water surface tension as a function of temperature. The filled circles with the 

dotted eye-guide lines represent the values calculated with Eq. (7) with KS HT T=  and ( )mTρρµ  

obtained from the IAPWS-95 Formulation [11] at different pressures along the melting curve, the 

open circles correspond to the values calculated with Eq. (7) with ρρµ =74.1, the open diamonds 

correspond to the values calculated with Eq. (13) with 0.32α = . The filled symbols 

correspond to experimental data obtained by Butorin and Skripov [14] (squares), by Wood and 

Walton [15] (triangles up), and by Huang and Bartell [16] (triangles down). The solid line 

corresponds to the constant value 0.027SLσ =  J⋅m-2; the long- and short-dashed lines represent 

the values calculated with Eq. (25) in Ref. [15] and with Eq. (3) in Ref. [16], respectively. 
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Fig. 2. The critical radius of the nuclear in supercooled water as a function of temperature. The 

legend as in Fig. 1. 
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Fig. 3. The phase diagram of supercooled water. The solid line represents the melting curve [12], 

the open diamonds and circles with the eye-guide lines correspond to the kinetic spinodal 

temperatures, KST , calculated with Eq. (7) with different approximations for the surface tension, 

and the symbols represent the homogeneous nucleation, HT  (triangles down), and spinodal, ST  

(triangles up), temperatures obtained by Angell et al. [10, 17].  
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Fig. 4. The isothermal compressibility of water at different pressures in normal and supercooled 

states as a function of temperature. The symbols represent experimental values obtained by 

Angell et al. [10, 17], the solid curves represent the values calculated with IAPWS-95 

Formulation [11], and the dotted-dashed curves correspond to the values calculated with the new 

analytic equation of state of Jeffery and Austin [29]. 
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Fig. 5. The phase diagram of supercooled water calculated with the new analytic equation of state 

of Jeffery and Austin [29]. The cross corresponds to the critical point of LDW-HDW equilibrium 

(dashed curve), the dotted curves correspond to the LDW-HDW spinodals. The other legend as in 

Fig. 2. 
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